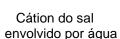
SAIS

Definição

De acordo com a definição de Arrhenius, sal é qualquer substância que quando dissolvida em água produz como ânion um íon diferente de OH^- e como cátion um íon diferente de H^+ .

Os sais são originários de reações ácido-base, chamadas de reações de neutralização. Além do sal, é formada também, a água como produto da reação.


Exemplos de reações de neutralização:

Obs.: Note que na fórmula do sal o cátion é fornecido pela base e o ânion é fornecido pelo ácido.

Note também que o número de moléculas de água produzidas é igual ao número de hidrogênios ionizáveis do ácido e ao número de hidroxilas da base.

Dizemos que quando um sal entra em contato com a água, ele sofre dissociação. A água faz a separação dos íons do sal envolvendo com seu polo negativo (O) os cátions do sal e com seu polo positivo (H) os ânions do sal. Isto pode ser visto no esquema a seguir:

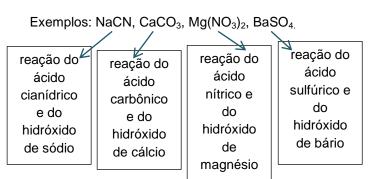
ânion do sal envolvido por água

Os exemplos a seguir, mostram simplificadamente, a dissociação de alguns sais:

$$CaSO_{4(s)} \rightarrow Ca^{+2}_{(aq)} + SO_4^{-2}_{(aq)}$$

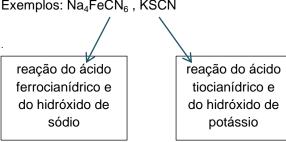
Fórmula química

Identifica-se um sal inorgânico com a presença de um cátion metálico no lado esquerdo da fórmula (doado pela base na reação de neutralização) e um ânion do lado direito da fórmula (doado pelo ácido na reação de neutralização).


A fórmula contém no mínimo:

- 2 elementos:

- 3 elementos:



- 4 elementos:

Lembrete: A única base diferente, que não contém metal, é a base originária da reação da amônia (NH_3) com água.

Exemplo:
$$NH_3 + H_2O \rightarrow \underline{NH_4OH}$$

Hidróxido de amônio

Logo, esta base em reação com um ácido irá produzir um sal que não contém metal.

Exemplo:
$$NH_4OH + HCI \rightarrow NH_4CI + H_2O$$

$$\begin{array}{c} NH_4CI + H_2O \\ \hline \\ Sal & que & \underline{n\~ao} \\ cont\'em & metal. \end{array}$$

Propriedades

- sabor salgado;
- sólidos à temperatura ambiente;
- conduzem eletricidade em solução aquosa (em água);
- podem ter caráter ácido ou básico dependendo do sal.

Classificação

- Quanto ao número de elementos:
 - Binário formado por 2 elementos. Exemplo: **NaCl**
 - Ternário formado por 3 elementos.
 Exemplo: CaSO₄
 - Quaternário formado por 4 elementos.
 Exemplo: K₄FeCN₅

. . . Etc!

- Quanto à natureza:
- sal normal: formado pela reação de neutralização total do ácido e da base.

Exemplo: Na₂CO₃ (carbonato de sódio)

2 NaOH +
$$H_2CO_3 \rightarrow NaHCO_3 + 2 H_2O$$

Obs.: Nesta reação, apenas todos os hidrogênios do ácido e todas as hidroxilas da base reagem para formar água. A proporção da reação para isto ocorrer foi de 2:1.

- sal ácido: formado pela neutralização parcial do ácido.

Exemplo: NaHCO₃ (bicarbonato de sódio ou carbonato ácido de sódio)

$$NaOH + H_2CO_3 \rightarrow NaHCO_3 + H_2O$$

Obs.: Nesta reação, apenas 1 dos hidrogênios do ácido reagem com a única hidroxila da base para formar água. Logo, a fórmula do sal contém o outro hidrogênio que não sofreu reação de neutralização. A proporção da reação para isto ocorrer foi de 1:1.

- sal básico: formado pela neutralização parcial da base.

Exemplo: CaOHCI (cloreto básico de cálcio)

Obs.: Nesta reação, apenas 1 das hidroxilas da base reagem com o único hidrogênio do ácido para formar água. Logo, a fórmula do sal contém a outra hidroxila que não sofreu reação de neutralização. A proporção da reação para isto ocorrer foi de 1:1.

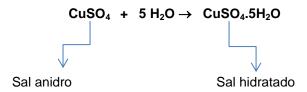
- sal duplo (duplo cátion): formado pela neutralização de duas bases diferentes com um ácido.

Exemplo: NaKCO₃ (carbonato de sódio e potássio)

NaOH + KOH +
$$H_2CO_3 \rightarrow NaKCO_3 + 2 H_2O$$

 sal duplo (duplo ânion): formado pela neutralização de uma base com dois ácidos diferentes.

Exemplo: CaBrCl (cloreto-brometo de cálcio)


$$Ca(OH)_2 + HCI + HBr \rightarrow CaBrCI + 2 H_2O$$

- sal hidratado: formado quando os íons do composto incorporam moléculas de água em seus retículos

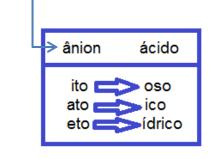
cristalinos, fazendo essas moléculas de água integrarem o cristal salino de tal forma que as propriedades do sal anidro (seco e puro) sejam diferentes do sal hidratado.

Exemplo: CuSO₄.5H₂O (sulfato de cobre pentahidratado)

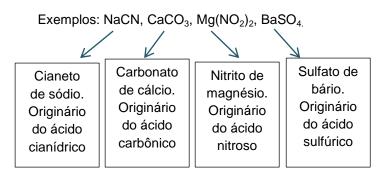
- Quanto à solubilidade:

Nem todos os sais são totalmente solúveis em água. Assim podemos classificá-los:

- solúveis;
- praticamente insolúveis.


Não é possível generalizar os sais em regras. É mais fácil consultar a tabela a seguir:

Compostos	Regra	Exceções
Àcidos Orgânicos	Solúveis	-
Permanganatos, Nitritos e Nitratos, Cloratos	Solúveis	-
Sais de Alcalinos e Amônio	Solúveis	carbonato de lítio
Percloratos	Solúveis	de potássio e mercúrio l
Acetatos	Solúveis	de prata
Tiocianatos e Tiossulfatos	Solúveis	de prata, chumbo e mercúrio
Fluoretos	Solúveis	de magnésio, cálcio e estrôncio
Cloretos e Brometos	Solúveis	de prata, chumbo e mercúrio I
lodetos	Solúveis	mercúrio, bismuto e estanho IV
Sulfatos	Solúveis	de prata, chumbo, bário, e estrôncio
Óxido metálico e Hidróxidos	Insolúveis	de alcalinos, amônio, cálcio, bário e estrôncio
Boratos, Cianetos, Oxalatos, Carbonatos, Ferrocianetos, Ferricianetos, Silicatos, Arsenitos, Arseniatos, Fosfitos, Fosfatos, Sulfitos e Sulfetos	Insolúveis	de alcalinos e de amônio


Nomenclatura

- sais oriundos de bases com nox fixo:

<u>Ânion do ácido</u> + <u>de</u> + <u>nome do elemento</u>

Terminação do ácido que originou o ânion.

- sais oriundos de bases contendo metais com nox variável:

Exemplos:

Cu₂CO₃ – carbonato cuproso CuCO₃ - carbonato cúprico

FeCl₂ – cloreto ferroso FeCl₃ – cloreto férrico

Au₃PO₄ – fosfato auroso Au PO₄ – fosfato áurico

PbSO₄ - sulfato plumboso Pb₂(SO₄)₄ - sulfato plúmbico

Os sais oriundos de bases contendo metais com nox variável também podem ser nomeadas através do numeral em romanos indicando a carga do metal.

Exemplos:

Cu₂CO₃ – carbonato de cobre I CuCO₃ - carbonato de cobre II

FeCl₂ – cloreto de ferro II FeCl₃ – cloreto de ferro III

 Au_3PO_4 – fosfato de ouro I Au PO_4 – fosfato de ouro III

PbSO₄ - sulfato de chumbo II Pb₂(SO₄)₄ - sulfato de chumbo IV

Principais sais e suas utilidades

- Bicarbonato de Sódio (NaHCO₃) utilizado em medicamentos como os antiácidos estomacais. Pode ser utilizado também como fermento na fabricação de massas de pães e bolos, por exemplo (libera gás carbônico permitindo o crescimento da massa). Pode ser encontrado também em extintores de incêndio.
- Carbonato de Cálcio (CaCO₃) Encontrado como um dos constituintes do mármore. Utilizado na fabricação do vidro comum e do cimento.
- Sulfato de Cálcio (CaSO₄) Utilizado na fabricação do giz e do gesso.
- Cloreto de Sódio (NaCl) Muito utilizado na alimentação. Como medicação é utilizado com um dos

componentes do soro caseiro (combate a desidratação).

- lodeto de sódio (Nal) e lodeto de potássio (KI) encontrados em pequenas quantidades no sal de cozinha. Ambos auxiliam na prevenção do bócio (doença que provoca um crescimento exagerado da glândula tireoide devido à carência de iodo) uma vez que contém o elemento iodo.
- Fluoreto de Sódio (NaF) utilizado na fluoretação da água, servindo como método anticárie. É encontrado também na pasta de dente.
- Nitrato de Sódio (NaNO₃) ou salitre do Chile. É um dos fertilizantes mais comuns dentre os nitrogenados.

Luana Nunes - Prof. Química

Todas as imagens foram retiradas do Google Images.