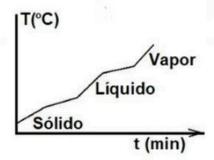


Gráficos de mudanças de estado

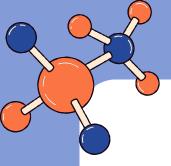
A mudança de estado físico ocorre quando uma substância passa de um estado para outro (sólido, líquido ou gasoso) devido à variação de temperatura ou pressão. Essas transformações podem ser representadas graficamente, e o comportamento dessas curvas varia conforme a composição da matéria.

1. Substância Pura

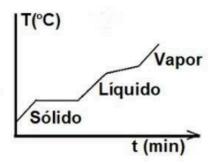

Uma substância pura apresenta pontos de fusão e ebulição bem definidos. Durante a mudança de estado, a temperatura permanece constante até que toda a substância mude de fase.

Exemplo: Água pura (funde a 0°C e entra em ebulição a 100°C, a 1 atm). Gráfico: A curva apresenta trechos horizontais (patamares) em fusão e ebulição, indicando temperatura constante nessas mudanças de estado.

2. Mistura Comum

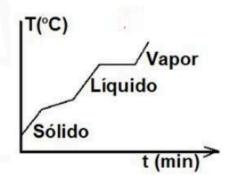

Uma mistura comum não possui pontos fixos de fusão e ebulição, pois os componentes fundem e evaporam gradualmente ao longo de uma faixa de temperatura.

Exemplo: Sal dissolvido na água.


Gráfico: Apresenta uma curva com transição gradual entre os estados, sem platô definido (sem patamares).

3. Mistura Eutética

Uma mistura eutética se comporta como uma substância pura na fusão, mantendo temperatura constante ao mudar do estado sólido para o líquido. Entretanto, na ebulição, a temperatura varia.



Exemplo: Liga de chumbo e estanho usada em soldas.

Gráfico: O platô (patamar) ocorre apenas na fusão; na ebulição, a temperatura varia.

4. Mistura Azeotrópica

Uma mistura azeotrópica possui comportamento distinto: apresenta temperatura constante na ebulição, como uma substância pura, mas varia na fusão.

Exemplo: Álcool etílico e água (proporção de 95,5% de etanol e 4,5% de água). Gráfico: O platô (patamar) ocorre apenas na ebulição; na fusão, a temperatura varia.

O estudo dos gráficos de mudança de estado físico é essencial para entender o comportamento das substâncias e misturas. Ele auxilia na identificação de composição e pureza dos materiais, sendo fundamental na indústria e na pesquisa científica.

Portal Alô, Gênios! Prof. Luana Nunes